

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level In Physics (WPH14) Paper 01 Further Mechanics, Fields and Particles

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2023 Question Paper Log Number P75624A Publications Code WPH14_01_MS_2310 All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark scheme notes

Underlying principle

The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. **It is not a set of model answers.**

1. Mark scheme format

- 1.1 You will not see 'wtte' (words to that effect). Alternative correct wording should be credited in every answer unless the MS has specified specific words that must be present. Such words will be indicated by underlining e.g. '<u>resonance</u>'
- 1.2 Bold lower case will be used for emphasis e.g. '**and**' when two pieces of information are needed for 1 mark.
- 1.3 Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".
- 1.4 Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

2. Unit error penalties

- 2.1 A separate mark is not usually given for a unit but a missing or incorrect unit will normally mean that the final calculation mark will not be awarded.
- 2.2 This does not apply in 'show that' questions or in any other question where the units to be used have been given, for example in a spreadsheet.
- 2.3 The mark will not be awarded for the same missing or incorrect unit only once within one clip in epen.
- 2.4 Occasionally, it may be decided not to insist on a unit e.g the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.
- 2.5 The mark scheme will indicate if no unit error is to be applied by placing brackets around the unit.

3. Significant figures

- 3.1 Use of too many significant figures in the theory questions will not prevent a mark being awarded if the answer given rounds to the answer in the MS.
- 3.2 Too few significant figures will mean that the final mark cannot be awarded in 'show that' questions where one more significant figure than the value in the question is needed for the candidate to demonstrate the validity of the given answer.
- 3.3 The use of one significant figure might be inappropriate in the context of the question e.g. reading a value off a graph. If this is the case, there will be a clear indication in the MS.
- 3.4 The use of $g = 10 \text{ m s}^{-2}$ or 10 N kg⁻¹ instead of 9.81 m s⁻² or 9.81 N kg⁻¹ will be penalised by one mark (but not more than once per clip). Accept 9.8 m s⁻² or 9.8 N kg⁻¹
- 3.5 In questions assessing practical skills, a specific number of significant figures will be required e.g. determining a constant from the gradient of a graph or in uncertainty calculations. The MS will clearly identify the number of significant figures required.

4. Calculations

- 4.1 **use of** the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.
- 4.2 If a 'show that' question is worth 2 marks, then both marks will be available for a reverse working. If the question is worth 3 marks then only 2 marks will be available.
- 4.3 The mark scheme will show a correctly worked answer for illustration only.

5. Quality of Written Expression

- 5.1 Questions that asses the ability to show a coherent and logically structured answer are marked with an asterisk.
- 5.2 Marks are awarded for indicative content and for how the answer is structured.
- 5.3 Linkage between ideas, and fully-sustained reasoning is expected.

Question Number	Answer	Mark
1	A is the correct answer	1
	B is not correct because the number of neutrons N is on the top line C is not correct because Z is on the top line and N is on the bottom line D is not correct because Z is on the top line	
2	C is the correct answer because $\Delta(mv) = F\Delta t$	1
3	D is the correct answer	1
	A is not correct because the frequency of the applied p.d. does not change B is not correct because the frequency of the applied p.d. does not change C is not correct because the particles do not experience a force inside the tubes	
4	A is the correct answer because $\phi = B.A$	1
5	B is the correct answer because the scattering is independent of any neutrons	1
6	D is the correct answer	1
	A is not correct because we do not know the sign of the charge on each particle B is not correct because we do not know the direction of the magnetic field C is not correct because we do not know the direction of the magnetic field	
7	B is the correct answer because $r = \frac{mv}{BQ}$	1
8	B is the correct answer because $\omega = 2\pi \times$ (revolutions per second)	1
9	D is the correct answer because $Q = Q_0 e^{-\frac{t}{RC}}$ and RC = 5 s	1
10	C is the correct answer because $mg - R = \frac{mv^2}{r}$	1

Questio		Mark
n	Answer	
Number		
11	Use of $\omega = \frac{2\pi}{T}$ (1)	
	Use of $v = \omega r$ (1)	
	$v = 1.9 \mathrm{ms^{-1}}$ (1)	3
	$\frac{\text{Example of calculation}}{2\pi}$	
	$\omega = \frac{2\pi}{\left(\frac{12 \text{ s}}{2}\right)} = 1.05 \text{ rad s}^{-1}$	
	$v = 1.05 \text{ rad s}^{-1} \times 1.8 \text{ m} = 1.89 \text{ m s}^{-1}$	
	Total for question 11	3

Questio			Mark
n	Answer		
Number			
12	EITHER Use of $E_k = \frac{p^2}{2m}$	(1)	
	Use of $\lambda = \frac{h}{p}$	(1)	
	$\lambda = 1.8 \times 10^{-11} \text{ m}$	(1)	
	OR		
	Use of $E_k = \frac{1}{2}mv^2$ and $p = mv$	(1)	
	Use of $\lambda = \frac{h}{p}$	(1)	
		(1)	3
	$\lambda = 1.8 \times 10^{-11} \mathrm{m}$		
	Example of calculation		
	$p = \sqrt{2 \times 7.2 \times 10^{-16}}$ $\times 9.11 \times 10^{-31}$ kg = 3.62×10^{-23} N s		
	$(v = 4.0 \times 10^7 \text{ m s}^{-1})$		
	$6.63 \times 10^{-34} \text{ Js}$ 1.02 × 10 ⁻¹¹ m		
	$\lambda = \frac{1}{3.62 \times 10^{-23} \text{ N s}} = 1.83 \times 10^{-10} \text{ m}$		
	Total for question 12		3

Questio		Mark
n	Answer	
Number		
13	Use of $W = mg$ (1)	
	Use of $F = BIL \sin \theta$ (1)	
	L = 0.064 m (1)	3
	Example of calculation $W = 2.8 \times 10^{-3} \text{ kg} \times 9.81 \text{ N kg}^{-1} = 0.02747 \text{ N}$ $L = \frac{0.027 \text{ N}}{120 \times 10^{-3} \text{ T} \times 3.6 \text{ A}} = 0.0636 \text{ m}$	
	Total for question 13	3

Questio		Mark
n	Answer	
Number		
14	An explanation that makes reference to the following points: Application of Newton's 1 st law to the path of the car/passenger, e.g. if no force the car/passenger would continue in a straight line Or a force is required to change direction for the car/passenger (1) A force was exerted on the car/passenger towards the centre of the circle Or an inwards force was exerted on the car/passenger at right angles to the motion	
	Or a centripetal force was exerted on the car/passenger (1)	
	The inward force is exerted by the car on the passenger (1)	
	There is <u>no outward force</u> (on the passenger) so the passenger's claim (1) is incorrect	4
	Total for question 14	4

Questio			Mark
n	Answer		
Number	10		
15(a)	Use of conversion factor of $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$	(1)	
	Equate kinetic energy to electric potential energy at distance of closest approach Or equates potential at point of closest approach to E_k/Q Use of $V = \frac{Q}{4\pi\varepsilon_0 r}$ with $W = QV$ [must be correct values of Q] $r = 4.1 \times 10^{-14}$ m $\frac{1}{10} \frac{10}{10} \frac{10}{1$	(1)(1)(1)	4
15(b)	Use of $F = \frac{Q_1 Q_2}{4\pi \epsilon_0 r^2}$ or $F = \frac{kQ_1 Q_2}{r^2}$	(1)	
	F = 11 N	(1)	2
	$\frac{\text{Example of calculation}}{F = \frac{79 \times 1.6 \times 10^{-19} \text{ C} \times 2 \times 1.6 \times 10^{-19} \text{ C}}{4\pi \times 8.85 \times 10^{-12} \text{ F m}^{-1} \times (5.68 \times 10^{-14} \text{ m})^2} = 11.3 \text{ N}$		
	Total for question 15		6

Questio n Number			Answe	er		Mark
*16	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content.			ctured		
	IC points	IC mark	Max linkage ma	urk Max final mark		
	6	4	2	6		
	5	3	2	5		
	4	3	1	4		
	3	2	1	3		
	2	2	0	2		
	1	1	0	1		
	0	0	0	0		
	The following of reasoning.	g table shows h	ow the marks should	be awarded for structure and	lines	
				Number of marks awarded structure of answer and sustained line of reasoning	l for	
	Answer sho structure wi	ws a coherent th linkages an	and logical d fully sustained	2		
	Answer is p linkages and	artially structu d lines of reaso	ared with some	1		
	Answer has is unstructu	no linkages b red	etween points and	0		
	Indicative	content				
	IC1 There Or the lines	e is a change ne wires cut t no marks, bu	in flux linkage (v he magnetic field at doesn't preven	with the coil) l (lines) ignore magnet c t subsequent marks, e.g.	uts for	
	chang IC2 The g	ge in flux lin greater the ra	kage. te of change of fl	ux linkage the larger the	1	
	IC3 After decre Or W polar the m Or A	the south po ase when the south ity of the con agnet s the south p	ole reaches the co th pole reaches th l changes to cont pole reaches the c	il the flux linkage (starts te coil, by Lenz's law the inue to resist the motion oil the rate of change of	o to) e of flux	
	linka (Not along	ge is zero direction of field lines f	field lines opposi	te)(reference to wires mo	ove	6
	IC4 As th	e south nole	of the magnet na	sses through the coil the		
	(indu	ced) e.m.f. is	s negative			
	IC5 The (downwards)	speed of the mag	gnet increases		
	IC6 Emf	is zero befor	e magnet enters c	oil		
	Or E	mf is zero w	hen midpoint of	magnet in coil		
	Or M	laximum neg	gative value is gro	eater than maximum pos	itive	
	value	;		1		
	Or T which	ime for whic h emf is posi	ch emf is negative tive	e is greater than time for		
	Or er	mf is zero wl	hen magnet totall	y leaves coil		
	Total for q	uestion 16				6

Questio			Mark
n	Answer		
Number			
17(a)	Use of $\varphi = BA$ with $A = dl$ and $l = vt$	(1)	
	Use of $\varepsilon = -\frac{d(N\varphi)}{dt}$ $\varepsilon = 3.9 \times 10^{-4} \text{ V}$	(1)	
		(1)	3
	Example of calculation		
	$\overline{\varphi = BA} = B \times d \times l = B \times d \times v \times t$		
	N = 1		
	$\varepsilon = \frac{d\varphi}{dt} = \frac{B \times d \times v \times t}{t} = B \times d \times v$		
	$\varepsilon = 0.15 \text{ T} \times 7.5 \times 10^{-2} \text{ m} \times 3.5 \times 10^{-2} \text{ m s}^{-1} = 3.94 \times 10^{-4} \text{ V}$		
17(b)	(By Lenz's law, if there were a complete circuit) the (direction of the) induced e.m.f. is such as to oppose the change that produces it	(1)	
	(With a current) there would be a force to the right (opposing the motion)		
	Or There would be a force in the direction opposite to the motion	(1)	
	So e.m.f. is from P to Q	(1)	3
	Total for question 17		6

Questio			
n	Answer		
Number			
18(a)	Two corresponding pairs of values of V and t read from graph	(1)	
	Use of $V = V_0 e^{-\frac{t}{RC}}$ Or Use of $\ln V = \ln V_0 - \frac{t}{CR}$	(1)	
	$C = 497 \ (\mu F) \ (Range \ 463 \ \mu F \ to \ 520 \ \mu F)$	(1)	
	Comparison of calculated value to tolerance calculated using 10% and conclusion as to whether it is in tolerance Or use of difference between calculated and labelled value to calculate percentage difference and conclusion as to whether it is in tolerance	(1)	4
	<u>OR</u> Use of $V = V_0 / e$ (4.4 V) to find time constant (74 s) Or intercept with <i>t</i> axis using initial tangent to find time constant	(1)	
	Use of time constant = RC	(1)	
	$C = 493 \ (\mu F) \ (Range \ 463 \ \mu F \ to \ 520 \ \mu F)$	(1)	
	Comparison of calculated value to tolerance calculated using 10% and conclusion as to whether it is in tolerance Or use of difference between calculated and labelled value to calculate percentage difference and conclusion as to whether it is in tolerance		
	Example of calculation	(1)	
	$\frac{4.1 \text{ V}}{12 \text{ V}} = e^{-\frac{80 \text{ s}}{150 \times 10^3 \Omega \times C}}$		
	$C = -\frac{80 \text{ s}}{150 \times 10^3 \Omega \times \ln\left(\frac{4.1 \text{ V}}{12 \text{ V}}\right)} = 4.97 \times 10^{-4} \text{ F}$		
	Largest C = $1.1 \times 470 \ \mu\text{F} = 517 \ \mu\text{F}$ The capacitance is 497 μF which is less than the maximum value of 517 μF , so value is within tolerance		

18(b)	Use of $W = \frac{1}{2} \cdot \frac{Q^2}{c}$ (Use of $W = \frac{1}{2}CV^2$ (Calculates ratio of energies stored and makes comparison to 1000 and suitable conclusion Or Applies factor of 1000 to one calculated energy and makes comparison to the other energy and suitable conclusion Example of calculation $W = \frac{1}{2} \cdot \frac{(56 \text{ C})^2}{47 \text{ F}} = 33.4 \text{ J}$ $W = \frac{1}{2} \times 470 \times 10^{-6} \times (12 \text{ V})^2 = 0.0338 \text{ J}$ Ratio $= \frac{33.4 \text{ J}}{0.0338 \text{ J}} = 987$ Ratio of energies stored is 990 which is close to 1000, so claim is accurate	1) 1)	3
	Total for question 18		7

Questio			Mark
n Nh	Answer		
Number	Use of $n - mn$	(1)	
19(a)	Use of $p = mv$	(1)	
	Use of trigonometrical function for x or y component of momentum for either stone	(1)	
	Applies conservation of momentum in x direction or y direction	(1)	
	$v = 1.32 \text{ (m s}^{-1}) (3 \text{ sf reqd}) \text{ if } x \text{ components considered}$ Or $v = 1.33 \text{ (m s}^{-1}) (3 \text{ sf reqd}) \text{ if } y \text{ components considered}$	(1)	4
	Example of calculation		
	$p = 19.1 \text{ kg} \times 0.87 \text{ m s}^{-1} = 16.6 \text{ kg m s}^{-1}$		
	y component for upper stone = 16.6 kg m s ⁻¹ × sin 50° = 12.7 kg m s ⁻¹		
	<i>y</i> component for lower stone = 12.7 kg m s ⁻¹ = 19.1 kg × $v \sin 30^{\circ}$		
	$v = \frac{12.7 \text{ kg m s}^{-1}}{0.5 \times 19.1 \text{ kg}} = 1.33 \text{ m s}^{-1}$		
19(b)	Use of $E_k = \frac{1}{2}mv^2$ Or use of $E_k = \frac{p^2}{2m}$	(1)	
	Correct calculation of one kinetic energy (e.c.f from (a))	(1)	
	Comparison and conclusion consistent with correctly calculated values of kinetic energy	(1)	3
	Example of calculation $E_{\rm k} = \frac{1}{2} \times 19.1 \text{ kg} \times (1.7 \text{ m s}^{-1})^2 = 27.6 \text{ J before}$		
	$E_{\rm k} = \frac{1}{2} \times 19.1 \mathrm{kg} \times (0.87 \mathrm{m s^{-1}})^2 + \frac{1}{2} \times 19.1 \mathrm{kg} \times (1.33 \mathrm{m s^{-1}})^2$		
	: $E_k = 7.2 \text{ J} + 16.9 \text{ J} = 24.1 \text{ J}$ after Initial $E_k = 28 \text{ J}$ so kinetic energy is not the same and collision is not elastic		
	Total for question 19		7

Questio			
n	Answer		
Number			
20(a)	Use of $C = 4\pi\varepsilon_0 r$	(1)	
	Use of $Q = CV$	(1)	
		(1)	
	Use of $E = \frac{V}{d}$	(1)	
	Use of $F = EQ$	(1)	
	$F = 1.6 \times 10^{-3} \text{ N}$	(1)	5
	$\frac{\text{Example of calculation}}{C = 4\pi \times 8.85 \times 10^{-12} \text{ F m}^{-1} \times 3.5 \times 10^{-2} \text{ m} = 3.89 \times 10^{-12} \text{ F}$		
	$Q = 3.89 \times 10^{-12} \text{F} \times 4500 \text{ V} = 1.75 \times 10^{-8} \text{ C}$		
	$E = \frac{4500 \text{ V}}{5.0 \times 10^{-2} \text{ m}} = 9.0 \times 10^4 \text{ V m}^{-1}$		
	$F = 9.0 \times 10^4 \text{ N C}^{-1} \times 1.75 \times 10^{-8} \text{ C} = 1.58 \times 10^{-3} \text{ N}$		
20(b)	When the sphere touches the plate it is charged with the same polarity The force on the sphere due to the electric field is away from that plate so it moves towards the opposite plate	(1)	
	Or the sphere is repelled from the plate with the charge of the same		
	Or the sphere is attracted towards the plate with opposite charge		
	When the sphere touches the charged plate opposite the first it		
	becomes oppositely charged and is repelled from that charged plate (and so on)	(1)	
	Or When the sphere touches the oppositely charged plate it becomes		
	oppositely charged and is attracted to the first plate (and so on)		
		(1)	3
20(c)	(The bell connected to the lightning conductor becomes positively	(1)	
	charged so) <u>electrons</u> are attracted to the right-hand side of the sphere	(1)	
	The sphere is attracted to the positively charged bell	ന	2
	[MP2 dependent on award of MP1]	(1)	-
	Total for question 20		10

Questio			Mark
n Nuumbau	Answer		
Number 21(a)	$u\bar{d}$ Or $d\bar{u}$ Or $u\bar{u}$ Or $d\bar{d}$	(1)	1
21(a)		(1)	1
21(b)	MAX 2 conservation laws		
()	(Conservation of) charge	(1)	
	$-1 \rightarrow -1 + 0$	(1)	
	Dependent on MP1		
	(Conservation of) lepton number	(1)	
	$0 \rightarrow 1 + -1$	(1)	
	Dependent on MP3		
	(Conservation of) baryon number	(1)	
	$0 \rightarrow 0 + 0$	(1)	4
	Dependent on MP5		
21(c)	Conversion of eV to J	(1)	
	Use of $\Delta E = c^2 \Delta m$	(1)	
	$m = 1.9 \times 10^{-28} (\mathrm{kg})$	(1)	3
	Example of calculation		
	$m = 106 \text{ MeV} \times 10^{6} \times 1.6 \times 10^{-19} \text{J eV}^{-1} = 1.70 \times 10^{-11} \text{ J}$		
	$m = \frac{1.70 \times 10^{-11} \text{ J}}{(3.0 \times 10^8)^2} = 1.88 \times 10^{-28} \text{ kg}$		
21(d)			
	(When $v = 0.99c$) relativistic effects will be significant Or (When $v = 0.99c$) time dilation occurs	(1)	
	The lifetime (of high energy pions) would be longer (than for pions at		
	rest) MP2 dependent on MP1	(1)	2
		(1)	2
	Total for question 21		10

Questio			Mark
n Nuumbau	Answer		
22(a)	There is a (resultant) force on the electrons in the vertical direction	(1)	
(.)	So the electrons are accelerated vertically	(1)	
	But in the horizontal direction the electrons have a constant speed	(1)	3
22(b)(i)	Use of $W = QV$	(1)	
	Use of $E_{\rm K} = \frac{1}{2}mv^2$	(1)	
	$v = 1.73 \times 10^7 \text{ (m s}^{-1})\text{(minimum 3 sf required)}$	(1)	3
	Example of calculation $E_{\rm K} = 1.6 \times 10^{-19} \text{ C} \times 850 \text{ V} = 1.36 \times 10^{-16} \text{ J}$		
	$v = \sqrt{\frac{2 \times 1.6 \times 10^{-19} \text{ C} \times 850 \text{ V}}{9.11 \times 10^{-31} \text{ kg}}} = 1.73 \times 10^7 \text{ m s}^{-1}$		
22(b)(ii)	Use of $s = ut$	(1)	
	Use of $F = EQ$	(1)	
	Use of $F = ma$	(1)	
	Use of $s = ut + \frac{1}{2}at^2$	(1)	
	s = 0.028 m (Allow ecf from (b)(i))	(1)	5
	Example of calculation		
	$t = \frac{7.5 \times 10^{-2} \text{ m}}{1.73 \times 10^{7} \text{ m s}^{-1}} = 4.34 \times 10^{-9} \text{ s}$		
	$F = 1.7 \times 10^4 \text{ V m}^{-1} \times 1.6 \times 10^{-19} \text{ C} = 2.72 \times 10^{-15} \text{ N}$		
	$a = \frac{2.72 \times 10^{-15} \text{ N}}{9.11 \times 10^{-31} \text{ kg}} = 2.99 \times 10^{15} \text{ m s}^{-2}$		
	$s = \frac{1}{2} \times 2.99 \times 10^{15} \text{ m s}^{-2} (4.34 \times 10^{-9} \text{ s})^2 = 0.028 \text{ m}$		

	Total for question 22	15
	$\frac{e}{m} = \frac{1.6 \times 10^{-19} \text{ C}}{9.11 \times 10^{-31} \text{ kg}} = 1.76 \times 10^{11} \text{ C kg}^{-1}$	
	$\frac{\text{Example of calculation}}{m} = \frac{1.73 \times 10^7 \text{ m s}^{-1}}{3.0 \times 10^{-3} \text{ T} \times 3.5 \times 10^{-2} \text{ m}} = 1.65 \times 10^{11} \text{ C kg}^{-1}$	
	Standard value of $\frac{e}{m} = 1.76 \times 10^{11} \text{ C kg}^{-1}$ calculated and comparison with experimental value and clear conclusion (1)	-
	Substitutes standard values into $\frac{e}{m}$ (1)	4
	$\frac{e}{m} = 1.65 \times 10^{11} \mathrm{C kg^{-1}} (\mathrm{ecf from} (\mathrm{b})(\mathrm{i})) \tag{1}$	
)	Or Use of $p = mv$ with $r = \frac{p}{BQ}$ to obtain $\frac{e}{m} = \frac{v}{Br}$ (1)	
22(b)(iii	Use of $F = BQv \sin \theta$ with $F = \frac{mv^2}{r}$ to obtain $\frac{e}{m} = \frac{v}{Br}$	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom